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Abstract. We study the mobility of a quasi-one-dimensional (Qip} electron system in the
presence of an axial magnetic field at low temperatures, We consider the mobility limits for
remote-impurity scattering, homogeneous-background scattering, interface-roughness scattering,
and alloy-disorder scattering mechanisms. For a system in which all carriers are in the
lowest subband, the electron-impurity interaction is modelled for the above cases, and analytic
expressions are dertved. Calculations appropriate for a GaAs QID structure are presented for
typical wire radius R, electron density N, impurity density Nj, and applied magnetic field B,

1. Introduction

New developments in fabrication techniques such as molecular-beam epitaxy (MBE) and
lithographic deposition have made possible the realization of quasi-one-dimensional (Q1D)
electron systems. In these structures based on the confinement of electrons, the electron gas
is quantized in two transverse directions, thus the charge carriers essentially move only in
the longitudinal direction. There have been many experimental [1-6] and theoretical [7-11]
stucies in various aspects of Q1D semiconducting electronic systems in both the absence
and presence of the applied magnetic field. Using magnetic depopulation, far-infrared, and
Raman spectroscopy techniques, plasmon dispersion in GaAs quantum wires is measured.
Extensive experimental [12] and theoretical {13] reviews on Q1D electron systems as realized
in semiconductors are available for a detailed discussion,

Hu and Das Sarma [14] have recently shown convincingly the reason one-dimensional
{1D) quantum-wire electrons behave as normal Fermi liquids, despite the theoretical claims
of the existence of non-Fermi-liquid-type ground states (i.e., Luttinger liquid). Also the
experiments by Gofii ¢ af [1] on the intersubband plasmons give strong evidence of
Fermi-liquid behaviour. Most of the experiments so far have used the applied field in
the transverse direction (i.e., perpendicular to the direction of free motion). In our model
the magnetic field B lies along the free direction, thereby making the physics of the problem
somewhat different from the transverse-field case. For the apalogous Q2D system, in-plane
magnetic field effects on the subband structure have been considered theoretically [15, 16)
and observed experimentally [17,18]. Tang and Butcher have investigated the effects of
an in-plane magnetic field on the low-temperature parallel [19] and perpendicular [20]
transport properties of Q2D systems. There are not to0 many experiments on QID electron
systems in which the applied magnetic field is in the longitudinal direction, because of
difficulties associated with fabricating uniform wires. In the available measurements [21]
novel anisotropies, reflected by the changes in the density of states, are seen. We have
recently studied [9] the magnetoplasmon modes in these systems.
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Owing to the limited number of available final states during the scattering process,
the mobility of QID electron systems is considerably enhanced, making them potentiaily
important for high-speed device applications. Since their early prediction by Sakaki [22)
and subsequent fabrication 3, 6], there has been a lot of interest in the transport properties of
Q1D systems. The hope of achieving very high mobilities by confining even more electrons
compared with the Q2D heterojunctions has been the main motivation of the study of QID
electron systems, The mobility of a semiconducting system at room temperature is often
dominated by phonon scattering. On the other hand, at low temperatures (T ~ 5 K),
there will always be ionized impurities and the mobitity will be essentially limited by their
presence. Thus it is important to assess the impurity limits to the mobility for various
mechanisms for possible device applications.

Sakaki [22] has considered the scattering of charge carriers by ionized impurities located
a fixed distance outside the 1D structure, and found that the impurity-limited mobility
increases exponentially as the distance between the impurities and the wire is increased. Lee
and Spector [23] extended these calculations to include background impurities. Gold and
Ghazali [10] obtained analytical results for several models of electron~impurity interaction
using approximate wave functions. It is noted that these investigations were carried out
for Q1D devices in the absence of a magnetic field. Numerical calculations for the mobility
of QID systems for impurity scatiering were given by Weng and Leburton [24] and Lee
and Vassell {25]. Calculations on mobility limits due to electron—phonon interactions in
quantum-well wires are also reported {26].

Our aim in this paper is to study the magnetic field dependence of the low-temperature
(T ~ 0 K) impurity-limited mobility of a QID electron system. We use the quantum-well
potential mode] developed recently by Constantinou, Masale, and Tiltey {27] to describe the
QID system in an axial magnetic field. Assuming the size quantum limit (SQL), namely only
the fowest subband is occupied by the charge carriers, we calculate the electron—electron
and electron-impurity interactions, and provide anaiytical expressions valid for GaAs in a
range of wire-radius R and applied-magnetic-ficld B values,

The rest of this paper is organized as follows. In section 2 we introduce the
wave function, energy levels, and electron—electron and electron—impurity interactions for
electrons confined in a cylindrical quantum wire in an external magnetic field B. We also
give a simple, approximate expression for the one-electron wave function in the Jowest
subband. In section 3, using our approximate wave function, we obtain analytical resuits
for the Coulomb and impurity interactions. An analytic expression for the dielectric function
e(g) when kg T <« Ep is used in the calculation of mobility of our quantum-well-wire model.
‘We consider the mobility limits for remote-impurity scattering, homogeneous-background
scattering, interface-roughness scattering, and alloy-disorder scattering mechanisms. We
conclude in section 4 with a brief summary of our results and comments on further studies.

2. Theory

We consider a model of the electton gas, quantized in two transverse directions, so that
the charge carriers can only move in the longitudinal direction. We choose the cross
section of the system to be circular with radius R, hence the quantum-wire geometry
becomes cylindrical. The external magnetic field is applied parallel to the loagitudinal
axis. In the $QL, the radius R of the quantum-we]l wire is much smaller than the thermal de
Broglie wavelength of the charge carriers, so that only the ground-state (lowest) subband is
populated. In some experiments [2] this limit has been achieved leading towards the goal of
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high-mobility devices. Cylindrical wires of radius R ~ 300 A have recently been fabricated
by Tonucci et al [28]. As will be discussed later, we choose the size parameters in this
work such that the SQL is attained and the intersubband scattering that otherwise would be
important [22] is completely neglected. The key parameter in the description of the motion
of an electron in a magnetic field is the ratio lg/R, where IZ = hic/eB is the cyclotron
radius. For Iy & R, the electron is strongly confined by the magnetic field, whereas in the
opposite limit /g 3> R the confinement due to B becomes unimportant [27]. In the model
of an infinite potential well confining the charge carriers, the effective~-mass wave function
is given by [27,29]

W ~ exp (~£/2)E™/2M (a, b, £)e™ (1)
where § = r%/2i% is a dimensionless variable, and M(a, b, £) is the confluent hyper-
geometric function with the arguments defined as @ = —E,y /e, + %( 1 4+ m + |mj), and

b = |m] + 1. The eigenvalves E,,; are obtained by solving M{a, b, R%/2I2) = 0, with
the index ! denoting the /th root. Other models with the same geometry such as parabolic
confinement of electrons yield qualitatively similar results.

We introduce the following approximate fonmn to the wave functions appropriate for the
lowest states (viz., ! = 1, and m =0, +1, ...}

W~ (1= r2aidy 2 72521 — 2/ Ryei® 2)
which satisfy the condition ¥(R) = 0. The normalization constants here are different from
those for the full wave functions, and may be evaluated analytically, We have found that
these approximate wave functions are in good agreement with the exact ones for a range
of B and R values for practical purposes. They allow us to calculate the Coulomb and
impurity interaction matrix elements analytically,

The Coulomb interaction and impurity scattering matrix elements between the subbands
are given respectively by

2 2
V@) = = [ & [ @ umnmrsar -ruieme) o
and
22 _
Vi) = -2 f &r Y () KolqIR: 1) @

where Kp(x) is the modified Bessel function of the second kind, and & is the background
dielectric constant. In the electron—impurity interaction we assume that an impurity is
located at ;.
We express the relaxation time 7, in terms of the electron—impurity potential and the
static dielectric function £(g) as [26]
1 ke (U@RP) &
% hEr e(2kp)
The average of the impurity scattering matrix elements above will be defined for various
mechanisms later. The Fermt wave vector kg and the Fermi energy Er are taken to be
those given by the zero-field values (kr = wN/2, where N is the number of electrons
per unit length) since their dependence on field strength is weak [30]. The relaxation time
determines the mobility at zero temperature by the following expression:
B =en/m*. (6)
In this study, we do not evaluate the relaxation time 1, directly, but use models for
the impurity potential (U2} to calculate u. Recently, Masale and Constantinou [31]
have calculated the magnetic-field-dependent scattering time 7, due to electron—phonon
interactions in Q1D systems.
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Figure 1. The electron-impurity interaction at B = 10 T for R, = O (upper curves), R; = R
{middle curves), and R; = 2R (lower curves). Solid and dashed lines correspond to the exact
and analytical results, respectively.

3. Results and discussion

In order to discuss our numerical results on the impurity-limited mobility, we employ
material parameters appropriate for GaAs, with electron effective mass m* = 0.067 m,,
dielectric constant x = 12.9, and a temperature of 5 K. Using the approximate wave
functions introduced in the previous section we calculate the Coulomb and impurity-
scattering matrix elements analytically in the fowest subband as

1 36 1 2 32 64
@) = G5 T Gre [[ﬁ T3GRE T 3Ry qrr 2N K’(‘IR’]
1 2 16 128 4
L [56 T T5@Re T3gRr QR @R [I3(qm - q_Rh(qR):H
J1 1 64 96 64

4k [210 15(g R)? * 15(gR)* + @RS (R}

x [zsw) - qiRhchJ] [Ks(qR) + q%m@R)]]] @
and

48  KolgR;)

Mgy =—-

6éx
L [(1+sn>rs(qm—;1-§mqm] @®
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Figure 2. The electron-impurity interaction as a function of B for R; = R (solid curve),
R, = 2R (dashed curve),

where we have used the definitions V111;(q) = (2¢2/k) fin1{g) and Vy; = (2€%/k) f11(g).
In the above equations £x = R2/22§ and the expression for fi1{g) is valid when R; = R.
Since £ ~ B, the magnetic-ficld-dependent matrix elements discussed above reduce to
the Gold and Ghazali [10] zero-field results as B — 0. Similarly, we obtain an analytical
expression for the electron-impurity matrix element when the impurity is within the wire,
ViZ., R,‘ < R,

3 48 1 [1 1R I[RE 8 P 1 Io(gR)K3(gR)
f“(q)__u — Ex/4) (gR)? [§ “iRT §[EE + (qR)Z] T @R? qR
1IfR:  R3Y? 1 R R} 16 9 R?
veslg| %~ w0 Taemn|! VR oK) GRnll 3
288 Io(gR) 6
L [mwmﬁmm]]]. ©

Again, the analogous result of Gold and Ghazali [10] is obtained as B — 0. We illustrate
the adequacy of our approximate wave functions and the resulting analytical expressions for
the electron—impurity potential, in figure 1. In this figure, we show the electron—impurity
interaction for the impurity distance R; = O (upper curves), R; = R (middle curves), and
R; = 2R (lower curves). Solid and dashed lines indicate exact and analytical results,
respectively, and as seen, we oblain close agreement., Similarly, a close agreement is
obtained between the exact {equation (3)) and approximate (equation (7)) calculations of
Juin(g). Itis of interest for the low-temperature mobility to evaluate f;;(2kg) as a function
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Figore 3. The rpa dielectric function £(2kg) as a function of electron density N for an
R =100 A wire.

of magnetic field B and this is depicted in figure 2 using equations (8} and (9}. As is
seen the magnetic field tends to increase the electron~impurity interaction, although, for the
magnetic ficlds shown, the effect is not too great.

It is well known that the dielectric function &(g) for a 1D system diverges at g = 2kg
signaling the Peierls instability. To circumvent this we use the dielectric function of a Q1D
electron system at finite temperatures [32,33] within the RPA which is given by

aka

£(2) = 1+ (ﬂ_zk) MS(EF/kBT) (10)

where ag =a"22/ﬁrar"‘es'2 is the Bohr radius defined in terms of the effective mass, and

VT4 X2
VE—x[2

For Ep > kgT (kg is the Boltzmann constant), the function S(x) may be approximated by
[32,33]

S(x) = % fu " dt In fcosh?(t — x/2)17). an

Be¥x

SGx)=In (——) (12)
Fid

where y = 0.577... is the Euler—Mascheroni constant, and with the help of equation (12)
we arrive at an analytic expression for £{2kr). In figure 3 we illustrate the dependence of
the dielectric function on carrier concentration. We note that, although its dependence on
carrier concentration is significant, its dependence on B is rather weak (at least for fields
up to 10 T).
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Figure 4. Mobility pepp due to remote doping as a function of the 1D eleciron density V. We
consider an uncompensated semiconductor with N = N, = 108 crm™!, Solid, dashed, and dotted
lines indicate 8 = 0, 5, and 10 T, respectively, for a 100 A wire. The upper and lower curves
correspond to R; = 2R and R; = R, respectively.

3.1. Remote doping

For remote impurities located outside the wire, we model the random impurity potential by
(10] (U% = N;[V1i1(g)12, where N; is the (one-dimensional) impurity density. The mobility
for remote doping is expressed as

g\ o, (mKP\ N T e@hke) TP

MRD = (h)aB (_ﬁ) N l:f11(2kF)] (13
In figure 4 we show the caleulated pgp as a function of the 1D electron density N for the
magnetic field values B = 0 (solid), 5 (dashed), and 10 T (dotted). The upper and lower
curves ate for B; = 2R and R; = R, respectively. We took the wire radius R = 100 A,
and the impurity density &; = 10° cm™. As expected from physical reasons the further the
impurities are from the electron gas, the higher is mobility. Alsc the magnetic field tends
to reduce the mobility somewhat. Mobility for remote doping as a function of the 1aagnetic
field is displayed in figure 5. Typically, the mobility drops by a factor of two from its zero
field value to its value at 10 T.

3.2, Interface-roughness scattering

It is known that for 2Db-semiconductor-based electron systems the interface-roughness
scattering is the dominant scattering mechanism. The importance of this mechanism has
been illustrated by Sakaki et @l [34] for 2D systems, and by Motoshisa and Sakaki [35]
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Figure 5. Mobility pupp due to remote doping as a function of magnetic field B. The higher
mobility curves are for R; = 2R with the lower mobility corresponding to R; = R.

for Q1D systems. To calculate the mobility for interface-roughness scattering we use the
following expression of the random potential [10]

v = (dE ‘“) N8 /e T, (14)
dR

Here § and 7 are the height and range parameters of the roughness, respectively. § describes

the roughness fluctuation amplitude, and 7 the correlation length. In keeping with the rest

of the calculations in this article we only consider the interface-roughness scattering in the

first subband, although extension to higher subbands is also possible. The magnetic-field-

dependent energy levels may be approximated by the formula given by Dingle {36}

2(m* — 1)]
12

ml

R 1
Wrﬁ, + Emhwc %ﬁwc(R/IB)z [1 +
in which t,, is the Ith root of the Bessel function Jn(x), and e = eB/m" is the cyclotron
frequency. Using the above expression we obtain for the interface-roughness scattering
mobility

Epy = (13)

ST [e k)P
Hw = (n) ER4 52‘/— (Ep; — 2EgtH P 1o

with Ex = B2/(2m* R?). Figure 6 shows the mobility for interface-roughness scattering as
a function of the carrier density N. Again the mobility decreases by a factor of two as in
the previous case.
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Figure 6. Mobility pr due to interface roughness as a function of the carrier density N for
B =0 (solid) and 10 {dotted) T.

3.3, Background doping

We now study the mobility due to homogeneous-background doping considering two models.
In the first model, impurities are homogeneously distributed inside the wire (0 < R; < R),
with a 3D impurity density Né”. For our second model we assume that the impurities are
homogeneously distributed outside the wire (R; > R), with a 3D impurity density Néz). The
random potential is defined as

2e2

2 R,00
(UH4D = NP (—) f dR; Rl fir(g)1%. an
O.R

K

The mobility for homogeneous-background doping for both models becomes

2 2

12 _ (€Y 2 (7K N [e(kp)]

Mep = \7 )% (_) (18)
(h) 16 / NP R2 g2 (2e)

where we have defined

l.oo
£ () = fo g @F, 19)

Using the approximate wave functions introduced in section 2 we evaluate the above
integrals. When the impurities are homogeneously distributed within the wire (model 1) we
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2
+ [(1 +ER)K3(gR) + f—;m(qm] ([L(gRY ~ [Li(g R

6tr Io(gR) 2, 1%
+[(1 + £R)K3(gR) + Py K,,,(qR)}[ GRD |:32+ 8Er [(QR) + (qR)z]]

8L (gR) 12 (qR)2 l 37 288
" TWRY? [”(qmz”’*[ 7 +2+<qR)2+(qRJ4]]]] @0

and for impurities homogeneously distributed outside the wire (model 2)

48>  [(1+£rMs(gR) - 65r1a(gR)/ (g R
(1 —&r/4) (gR)°

8 (@) =3 (K1 RT ~ [Ko(gRI].

21)
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Figure 8. Mobility npp due to background doping of model |, as a function of B, for
R =100 A.

We plot in figure 7 the magnetic-field dependence of gﬂ‘z) (k). It is predicted that gﬁ)
varies by a factor of two over the range of B considered but the variation of gﬂ) is even
more pronounced. These differences, as we shall see, manifest themselves in the mobility.
The results of our calculation of ,u,g,’) are displayed in figure 8 as a function of magnetic
field B, where we used Né” =2 x 10/R? cm™? for the 3D impurity density. We predict
a drop in the mobility by two orders of magnitude due to the the behaviour of gﬂ’ with B.
In figure 9 we show the mobility for homogeneous-background doping of our model 2. We
have used Ng) R?/2 = N for charge neutrality in uncompensated semiconductors, and the
upper and lower curves in figure 9 correspond to R = 100 and 50 A. As in model 1 the
mobilities decrease, but in this case it is only by an order of magnitude due to the weaker
variation in gﬁ).

3.4. Alloy-disorder scattering

Following the model for alloy-disorder scattering developed by Ando {37] for 2D systems,
and that extended by Gold and Ghazali [38] to QID systems, we express the random potential
as {U?) = (8V)2x(l — x)Fap/4a3. Here 8V is the rooi-mean-square spatial average of the
fluctnating alloy potential, and Fap is the form factor defined by

Fap=a f dr p )it (22)

where ¥ (r) is the wave function for the electrons in the lowest subband. Using our
approximate form to the wave function, we obtain
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which reduces to the Gold and Ghazali [38] result in the B = O limit. The mobility for
alloy-disorder scattering becomes

(23)

[s(2kp)]?
(8VY2x(l — x)Fap

in which the fluctuating alloy potential 8V is in units of effective Rydbergs (Ryd=e?/2ag). In
figure 10 we show the wire-radius dependence of alloy-disorder scattering-limited mobility
for an Al,Ga;—.As semiconductor wire. We took the Al concentration to be x = 0.3, and
fluctuating alloy potential §V = 1 meV. Solid, dashed, and dotted curves are for & = 0,
5, and 10 T, respectively. We observe that the magnetic field dependence of pap is not
very strong, although interestingly, the magnetic field leads to an increase in the mobility
(although very weak), in contrast to the other cases. Our calculations were performed for
carrier density of N = 10° cm™!, and only the lowest subband is assumed to be filled.
When N 2 2/R, the population of higher subbands shouid also be taken into account {10].

tap = (%) aidm Nag @4

4. Summary

In this paper we have investigated the magnetic-field dependence of the impurity-limited
mobility in Q1D electron systems. For a model of the Q1D system we considered a quantum-
well wire in a cylindrical geometry and assumed that an external field is applied in the axial
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Figure 10. Mobility uap due to alloy-disorder scattering, as a function of the wire radius R at
N = 10° cm™! for B = 0 {solid), 5 (dashed), and 10 (dotted) T.

direction. Introducing approximate wave functions we obtained analytical expressions for
the magnetic-field-dependent electron—impurity interaction and impurity-limited mobility,
which might be useful to the experimentalists, It is noted here that these analytic expressions
for the mobility derived in the previous sections agree with the exact numerical results to a
very good degree. Electron—impurity interactions are used to construct models for remote
doping, interface-roughness scattering, homogeneous-background doping, and alloy-disorder
scattering, We find that the various mobilities are lowered with increasing magnetic field
(except for alloy disorder), with typically a factor of two reduction at 10 T.

Our calculations were performed within the random phase approximation and assuming
only the first subband is occupied (the so-called exireme quantum limit). This latter
assumption needs some justification. Theoretical results by Nixon and Davies [39] predict
that in a split-gate structure the one-dimensional electron gas is strongly distorted by
the random potential of the impurities and undergoes a metal-insulator transition before
reaching the extreme quantum limit. Nikolic and MacKinnon have also recently considered
localization effects in some detail for a different type of quantum wire {40]. On the other
hand, the experiments by Goni ef al [1] clearly demonstrate the realization of the extreme
quantum limit and further observe the plasmon modes which are a clear indication of Fermi-
liquid behaviour.

In the calculations for zero-field mobility Gold and Ghazali [10] found that local-
field corrections to the electron—electron interactions at N ~ 10° cm™! tend to reduce
the mobility. This approach goes heyond the RPA. We have not investigated the local-
field effects on the mobility in the presence of a magnetic field, but such effects could
be incorporated in our calculations. It would also be interesting to study the temperature
dependence of the impurity-limited mobility. There are not many experiments on QID
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semiconducting electron systems in the presence of an axial magnetic field. We hope our
theoretical considerations will motivate such experiments in the future.
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