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Abstract. We study the mobility of a quas-one.dimnsiod (QID) e l m o n  system in the 
presence of an axial magnetic field at low t e m p e m m .  We consider lhe mobility limits for 
remote-impurity scattering, homogeneowbackground scattering, interface-roughness scanering, 
and alloy-disorder scattering meehaaisms. For a system in which all &em are in the 
lowest subband. the elecvon-impurity interadion is modelled for the above cases, and analyric 
expressions are derived. Calculations appropriate for a GaAs QID structure are presented for 
typical wire radius R. electmn density N, impurily density Ni, and applied magnetic field B. 

1. Introduction 

New developments in fabrication techniques such as molecular-beam epitaxy (MBE) and 
lithographic deposition have made possible the realization of quasi-one-dimensional @IO) 
electron systems. In these structures based on the confinement of electrons, the electron gas 
is quantized in two transverse directions, thus the charge carriers essentially move only in 
the longitudinal direction. There have been many experimental [ 1 4  and theoretical [7-111 
studies in various aspects of QID semiconducting electronic systems in both the absence 
and presence of the applied magnetic field. Using magnetic depopulation, far-infrared, and 
Raman spectroscopy techniques, plasmon dispersion in GaAs quantum wires is measured. 
Extensive experimental 1121 and theoretical [13] reviews on QlO electron systems as realized 
in semiconductors are available for a detailed discussion. 

Hu and Das Sarma [14] have recently shown convincingly the reason one-dimensional 
(ID) quantum-wire electrons behave as normal Fermi liquids, despite the theoretical claims 
of the existence of non-Fermi-liquid-type ground states (i.e., Luttinger liquid). Also the 
experiments by Goiii et al [I] on the intersubband plasmons give strong evidence of 
Fermi-liquid behaviour. Most of the experiments so far have used the applied field in 
the transverse direction (i.e., perpendicular to the direction of free motion). In our model 
the magnetic field E lies along the free direction, thereby making the physics of the problem 
somewhat different from the transverse-field case. For the analogous Q2D system, in-plane 
magnetic field effects on the subband structure have been considered theoretically 115,161 
and observed experimentally [17,18]. Tang and Butcher have investigated the effects of 
an in-plane magnetic field on the low-temperature parallel 1191 and perpendicular [20] 
transport properties of Q ~ D  systems. There are not too many experiments on QID electron 
systems in which the applied magnetic field is in the longitudinal direction, because of 
difficulties associated with fabricating uniform wires. In the available measurements [21] 
novel anisotropies, reflected by the changes in the density of states, are seen. We have 
recently studied [9] the magnetoplasmon modes in these systems. 
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Owing to the limited number of available final states during the scattering process, 
the mobility of QlD electron systems is considerably enhanced, making them potentially 
important for high-speed device applications. Since their early prediction by Sakaki 1221 
and subsequent fabrication [5,6], there has been a lot of interest in the transport properties of 
QID system. The hope of achieving very high mobilities by confining even more electrons 
compared with the QU, heterojunctions has been the main motivation of the study of QID 
electron systems. The mobility of a semiconducting system at room temperature is often 
dominated by phonon scattering. On the other hand, at low temperatures (T - 5 K), 
there will always be ionized impurities and the mobility will be essentially limited by their 
presence. Thus it is important to assess the impurity limits to the mobility for various 
mechanisms for possible device applications. 

Sakaki [22] has considered the scattering of charge carriers by ionized impurities located 
a fixed distance outside the ID structure, and found that the impurity-limited mobility 
increases exponentially as the distance between the impurities and the wire is increased. Lee 
and Spector [23] extended these calculations to include background impurities. Gold and 
Ghazali [lo] obtained analytical results for several models of electron-impurity interaction 
using approximate wave functions. It is noted that these investigations were carried out 
for Q1D devices in the absence of a magnetic field. Numerical calculations for the mobility 
of QID systems for impurity scattering were given by Weng and Leburton [24] and Lee 
and Vassell [25]. Calculations on mobility limits due to electron-phonon interactions in 
quantum-well wires are also reported 1261. 

Our aim in this paper is to study the magnetic field dependence of the low-temperature 
(T - 0 K) impurity-limited mobility of a QID electron system. We use the quantum-well 
potential model developed recently by Constantinou, Masale, and lilley 1271 to describe the 
QID system in an axial magnetic field. Assuming the size quantum limit (SQL), namely only 
the lowest subband is occupied by the charge carriers, we calculate the electron-electron 
and electron-impurity interactions, and provide analytical expressions valid for GaAs in a 
range of wire-radius R and applied-magnetic-field B values. 

The rest of this paper is organized as follows. In section 2 we introduce the 
wave function, energy levels, and electron4ectron and electron-impurity interactions for 
electrons confined in a cylindrical quantum wire in an external magnetic field B .  We also 
give a simple, approximate expression for the one-electron wave function in the lowest 
subband. In section 3, using our approximate wave function, we obtain analytical results 
for the Coulomb and impurity interactions. An analytic expression for the dielectric function 
&(q) when ksT << EF is used in the calculation of mobility of our quantum-well-wire model. 
We consider the mobility limits for remoteimpurity scattering, homogeneous-background 
scattering, interface-roughness scattering, and alloy-disorder scattering mechanisms. We 
conclude in section 4 with a brief summary of our results and comments on further studies. 

2. Theory 

We consider a model of the elecbon gas, quantized in two transverse directions, so that 
the charge carriers can only move in the longitudinal direction. We choose the cross 
section of the system to be circular with radius R ,  hence the quantum-wire geometry 
becomes cylindrical. The extemal magnetic field is applied parallel to the longitudinal 
axis. In the SQL, the radius R of the quantum-well wire is much smaller than the thermal de 
Broglie wavelength of the charge carriers, so that only the ground-state (lowest) subband is 
populated. In some experiments [2] this limit has been achieved leading towards the goal of 
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high-mobility devices. Cylindrical wires of radius R - 300 8, have recently been fabricated 
by Tonucci ef a1 [281. As will be discussed later, we choose the size parameters in this 
work such that the SQL is attained and the intersubband scattering that otherwise would be 
important [22] is completely neglected. The key parameter in the description of the motion 
of an electron in a magnetic field is the ratio l e /R ,  where 1: = hc/eB is the cyclotron 
radius. For IB < R, the electron is strongly confined by the magnetic field, whereas in the 
opposite limit 1~ >> R the confinement due to B becomes unimportant [27]. In the model 
of an infinite potential well confining the charge carriers, the effectivemass wave function 
is given by [27,29] 

(1) 
where [ = .'//U: is a dimensionless variable, and M(a,  b, 6) is the confluent hyper- 
geometric function with the arguments defined as a = -E,r/ho, + f (1  + m + Iml), and 
b = Iml + 1. The eigenvalues E,I are obtained by solving M(a ,  6 ,  R2/2i i )  = 0, with 
the index 1 denoting the Ith root. Other models with the same geometry such as parabolic 
confinement of electrons yield qualitatively similar results. 

We introduce the following approximate form to the wave functions appropriate for the 
lowest states (viz., 1 = 1, and m = 0, f l ,  . . .): 

(2) 
which satisfy the condition @(R)  = 0. The normalization constants here are different from 
those for the full wave functions, and may be evaluated analytically. We have found that 
these approximate wave functions are in good agreement with the exact ones for a range 
of B and R values for practical purposes. They allow us to calculate the Coulomb and 
impurity interaction mahix elements analytically. 

The Coulomb interaction and impurity scattering matrix elements between the subbands 
are given respectively by 

@ - exp (-$/2)$1"1'2M(a, b, $)e'" 

@ - (1 - r2/4~~)(rZ/21~)1"1'2(1 - r2/R2)eime 

2e2 2 1  * 
Kjkf(q) = - / d2r  / d r 1G; (T)@j(r)~o(qlr-r 'l)@~(r')@f(r') (3) 

K 

and 

Kj(q) = -- d2T @~(~)@j(p.)Ko(41R,)&(qlR, -T I )  (4) 2e2 K J 
where Ko(x) is the modified Bessel function of the second kind, and IC is the background 
dielectric constant. In the electron-impurity interaction we assume that an impurity is 
located at R, . 

We express the relaxation time 5, in terms of the electron-impurity potential and the 
static dielectric function E @ )  as [26] 

1 - kF (IU(%F)~') (5) 

The average of the impurity scattering matrix elements above will be defined for various 
mechanisms later. The Fermi wave vector kF and the Fermi energy EF are taken to be 
those given by the zero-field values (kp = nN/2 ,  where N is the number of electrons 
per unit length) since their dependence on field strength is weak [30]. The relaxation time 
determines the mobility at zero temperature by the following expression: 

p = eq/m*.  (6) 
In this study, we do not evaluate the relaxation time q directly, but use models for 
the impurity potential ( U 2 )  to calculate p. Recently, Masale and Constantinou [31] 
have calculated the magnetic-field-dependent scattering time rS due to electron-phonon 
iuteractions in Q1D systems. 

q f t E ~  E(2kR)' ' 
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Fiyre 1. The electron-impurity interaction aI B = 10 T for R, = 0 (upper curves). Ri = R 
(middle curves). a d  Rj = 2R (lower curves). Solid and dashed lines correspond to the exact 
and analflcal results, respectively. 

3. Results and discussion 

In order to discuss ow numerical results on the impurity-limited mobility, we employ 
material parameters appropriate for GaAs. with electron effective mass mu = 0.067 m,, 
dielectric constant K = 12.9, and a temperature of 5 IC Using the approximate wave 
functions introduced in the previous section we calculate the Coulomb and impurity- 
scattering matrix elements analytically in the lowest subband as 

1 1 64 +--- 96 64 '"[z - 15(qR)2 +- 15(qR)' (qR)6 (qR)4  

and 
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where we have used the definitions VI111(q) = (2e’ /~) f i l l l (q)  and VII = (Ze’/K)fij(q). 
In the above equations {R = R2/21g and the expression for f i t ( q )  is valid when Ri R. 
Since CR - B, the magnetic-field-dependent mamx elements discussed above reduce to 
the Gold and Ghazali [lo] zero-field results as E + 0. Similarly, we obtain an analytical 
expression for the electron-impurity matsix element when the impurity is within the wire, 
viz., Ri < R, 

Again, the analogous result of Gold and Ghazali [ 101 is obtained as E --t 0. We illustrate 
the adequacy of our approximate wave functions and the resulting analytical expressions for 
the electron-impurity potential, in figure 1. In this figure, we show the electron-impurity 
interaction for the impurity distance Ri = 0 (upper curves), Ri = R (middle curves), and 
Ri = 2R (lower curves). Solid and dashed lines indicate exact and analytical results, 
respectively, and as seen, we obtain close agreement. Similarly, a close agreement is 
obtained between the exact (equation (3)) and approximate (equation (7)) calculations of 
ful1(q). It is of interest for the low-temperature mobility to evaluate fil(u(~) as a function 
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Figure 3. l k  W A  diekuic function ~ ( 2 k p )  m a function of elecLron density N for an 
R = 100 .& WiR. 

of magnetic field B and this is depicted in figure 2 using equations (8) and (9). As is 
seen the magnetic field tends to increase the electron-impurity interaction, although, for the 
magnetic fields shown, the effect is not too great. 

It is well known that the dielectric function &(q) for a ID system diverges at q = 2kp 
signaling the Peierls instability. To circumvent this we use the dielectric function of a QID 
electron system at finite temperatures [32,33]  within the RPA which is given by 

where ae = 7t2/m'e2 is the Bohr radius defined in terms of the effective mass, and 

For EF >> ~ B T  (ks is the Boltmann constant), the function S ( x )  may be approximated by 
[32,331 

where y = 0.577.. . is the Euler-Mascheroni constant, and with the help of equation (12) 
we arrive at an analytic expression for ~ ( 2 k . ~ ) .  In figure 3 we illustrate the dependence of 
the dielectric function on carrier concentration. We note that, although its dependence on 
carrier concentration is significant, its dependence on B is rather weak (at least for fields 
up to 10 T). 
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Figure 4. Mobiliry CRD due to remote doping as a function of the I D  electron density N. We 
consider an uncompensated semiconductor with N = N, = IO6 cm-’ , Solid, dashed, and doned 
lines indicate B = 0, 5, and 10 T, respectively. for a 100 A wire. The upper and lower curves 
correspond to Ri = 2R and Ri = R ,  respectively. 

3.1. Remote doping 

For remote impurities located outside the wire, we model the random impurity potential by 
[IO1 (Uz) = N;[V,,(q)]z, where N, is the (one-dimensional) impurity density. The mobility 
for remote doping is expressed as 

In figure 4 we show the calculated pRD as a function of the 1D electron density N for the 
magnetic field values B = 0 (solid), 5 (dashed), and 10 T (dotted). The upper and lower 
curves are for R, = 2R and Ri = R, respectively. We took the wire radius R = 100 A, 
and the impurity density N; = lo6 cm-’, As expected from physical reasons the further the 
impurities are from the electron gas, the higher is mobility. Also the magnetic field tends 
to reduce the mobility somewhat. Mobility for remote doping as a function of the magnetic 
field is displayed in figure 5. Typically, the mobility drops by a factor of two from its zero 
field value to its value at 10 T. 

3.2. Inte&ce-roughness scattering 

It is known that for m-semiconductor-based electron systems the interface-roughness 
scattering is the dominant scattering mechanism. The importance of this mechanism has 
been illustrated by Sakaki et a1 [34] for ZD systems, and by Motoshisa and Sakaki [35] 
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Figure 5. Mobility pm due to remote dopiog as a function of magnetic field E .  The higher 
mobiliry c w e s  are for Ri = ZR with the lower mobility comespanding to Ri = R. 

for QID systems. To calculate the mobility for interface-roughness scattering we use the 
following expression of the random potential [IO] 

Here S and q are the height and range parameters of the roughness, respectively. 6 describes 
the roughness fluctuation amplitude, and q the correlation length. In keeping with the rest 
of the calculations in this article we only consider the interfaceroughness scattering in the 
first subband, although extension to higher subbands is also possible. The magnetic-field- 
dependent energy levels may be approximated by the formula given by Dingle 1361 

in which tml is the Zth root of the Bessel function Jm(x), and w, = eBjm' is the cyclotron 
frequency. Using the above expression we obtain for the interface-roughness scattering 
mobility 

with E R  = E2/(2m'R2). Figure 6 shows the mobility for interface-roughness scattering as 
a function of the carrier density N. Again the mobility decreases by a factor of two as in 
the previous case. 
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Figure 6. Mobility P I R  due 10 interface roughhess as a function of the carrier density N for 
B = 0 (solid) and IO (dotted) T. 

- 

- R = ~ O O A  - 

3.3. Backgmund doping 

We now study the mobility due to homogeneous-background doping considering two models. 
In the iirst model, impurities are homogeneously distributed inside the wire (0 c R; < R),  
with a 3D impurity density Ni). For our second model we assume that the impurities are 
homogeneously distributed outside the wire (R; > R ) ,  with a 3D impurity density Nf). The 
random potential is defined as 

The mobility for homogeneous-background doping for both models becomes 

where we have defined 

Using the approximate wave functions introduced in section 2 we evaluate the above 
integrals. When the impurities are homogeneously distributed within the wire (model 1) we 
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Fwre 8. Mobility WBD due to bacliground doping of model I ,  as a function of E ,  for 
R = I M ) A .  

We plot in figure 7 the magnetic-field dependence of g : Y ’ ( 2 k ~ ) .  It is predicted that &) 

varies by a factor of two over the range of E considered but the variation of &’ is even 
more pronounced. These differences, as we shall see, manifest themselves in the mobility. 
The results of our calculation of & are displayed in figure 8 as a function of magnetic 
field B ,  where we used N:’ = 2 x 106/R2 for the 3D impurity density. We predict 
a drop in the mobility by two orders of magnitude due to the the behaviour of with B .  
In figure 9 we show the mobility for homogeneous-background doping of our model 2. We 
have used N$’R2/2 = N for charge neutrality in uncompensated semiconductors, and the 
upper and lower curves in figure 9 correspond to R = 100 and 50 A. As in model 1 the 
mobilities decrease, but in this case it is only by an order of magnitude due to the weaker 
variation in &’. 
3.4. Alloy-disorder scattering 

Following the model for alloy-disorder scattering developed by Ando [37] for 2D systems, 
and that extended by Gold and Ghazali [38] to QID systems, we express the random potential 
as (U’) = (SV)’x(I -x )F- /4aE.  Here 6V is the root-mean-square spatial average of the 
fluctuating alloy potential, and F- is the form factor defined by 

FAD = a i  [ dZT l@(r)I4 (22) 

where @(P) is the wave function for the electrons in the lowest subband. Using OUT 

approximate form to the wave function, we obtain 
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Figure 9. Mobility p g ~  due to background doping of madel 2. as a function of B for R = 50 16 
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which reduces to the Gold and Ghazali 1381 result in the B = 0 limit. The mobility for 
alloy-disorder scattering becomes 

in which the fluctuating alloy potential 6 V is in units of effective Rydbergs (Ryd=e2/2aa). In 
figure 10 we show the wire-radius dependence of alloy-disorder scattering-limited mobility 
for an AI,Gal-,As semiconductor wire. We took the AI concentration to be x = 0.3, and 
fluctuating alloy potential 6V = 1 meV. Solid, dashed, and dotted curyes are for B = 0, 
5, and 10 T, respectively. We observe that the magnetic field dependence of is not 
very strong, although interestingly, the magnetic field leads to an increase in the mobility 
(although very weak), in contrast to the other cases. Our calculations were performed for 
cmier density of N = lo6 cm-'. and only the lowest subband is assumed to be filled. 
When N > 2 / R ,  the population of higher subbands should also be taken into account [lo]. 

4. Summary 

In this paper we have investigated the magnetic-field dependence of the impurity-limited 
mobility in QlD electron systems. For a model of the QlD system we considered a quantum- 
well wire in a cylindrical geometry and assumed that an external field is applied in the axial 
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semiconducting electron systems in the presence of an axial magnetic field. We hope our 
theoretical considerations will motivate such experiments in the future. 

B Tanatar and N C Constantimu 
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